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Propagation of the average carrier frequency of chirped pulses 
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Abstract. The modulation of frequency in resonant propagation can be characterized by the 
distance-dependent average carrier frequency of the pulse. We show that the propagation 
of this average frequency is governed by a conservation law specific for chirped pulses. We 
find a relation between the average frequency, the corresponding average wavevector and 
the energy of the pulse. 

1. Introduction 

The energy flow between different modes of the field may result in considerable changes 
of the spectrum of a light pulse during nonlinear propagation. Such effects are of 
primary importance in the process of formation of stable pulses. They also appear as 
small but cumulative corrections in long-distance steady-state propagation. 

The frequency distribution of energy in the pulse depends on both the real envelope 
of the pulse and its phase when the phase varies with time. The variation of phase 
produces asymmetry in the energy distribution of the pulse around its carrier frequency. 
To describe the effects of the modulation of phase in resonant propagation Diels and 
Hahn (1973) introduced the notion of the average carrier frequency of the pulse. This 
average frequency can be simply expressed by the zeroth and first spectral moments of 
the pulse energy. The corresponding higher moments are small in the slowly varying 
envelope approximation (SVEA). Since a complete analysis of phase modulation 
described by a function of two variables is a complicated problem, the use of a set of a 
few moments depending on a single variable looks very promising. The present paper 
may be considered as a first step in formulating such a description. 

We derive a differential conservation law specific for resonant propagation of 
chirped pulses and, as a consequence of it, we find the propagation law for the first 
spectral moment of the pulse energy. This law has a simple interpretation of conserva- 
tion of the first moment of the total energy distribution in the system. The propagation 
law for the average carrier frequency follows as an immediate consequence from this 
law. Further, we find the propagation law for the corresponding average wavevector, 
define the average ‘phase velocity’ and establish a connection between the average 
quantities and the energy of the pulse generalized to include higher-order corrections in 
SVEA. 
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2. Equations of motion and basic definitions 

Let %(z, t )  and +(z ,  t )  denote the envelope and phase of the plane-wave electromag- 
netic pulse 

+ cc (2.1) E(z,  t )  eg( z ,  t )  ei(wo'-kz) 

where e is the circular polarization vector, wo is the frequency of the carrier wave, 
k = wo/c, c is the velocity of light in the host medium and cc stands for complex 
conjugate. Let u(y,  z,  t ) ,  v ( y ,  z ,  t ) ,  w ( y ,  z,  t) denote the microscopic functions of 
two-level systems. The polarization due to an atom is determined by U and v in the 
usual way, while w is the population inversion. The parameter y = R - R, measures the 
distance of an individual atomic frequency R from the central frequency of the atomic 
line 0,. The detuning is S = wo-n0.  For slowly varying 8 and 4 the Bloch-Maxwell 
equations read (see e.g. Lamb 1971) 

au U 
-= --(y-a-4)0--, 
at  7.2 

au . 2 8  V 
-= ( 7 - 6  -+)U + - - 8 w - - - ,  
at h T2 

(2.3) 

D8+$cu% = a ( v ) ,  (2.5) 

%D4 = -u (u) ,  (2.6) 
where 

a a  4=- . a4 D =-+ C-, 
at az at ' 

a = 27rNwO8, N is the density of resonant atoms, 8 denotes the transition matrix 
element in the two-level system, U accounts for broad-band linear losses or amplifica- 
tion, T2 is the homogeneous relaxation time. Angular brackets denote averages over 
the distribution of frequencies in the atomic line, e.g., 

m 

(U) = J-, U(?,, 2, t M y )  dy, 

where g ( y )  is a symmetric distribution function. 

frequency, as defined by Diels and Hahn (1973) is 
The instantaneous carrier frequency of the pulse is wo+& The average carrier 

w a v  = W O  + 4 a w  (2.7) 
where 
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In terms of the Fourier transform E, of the complex field (2.1) we can write 

Yo=- 1" (E,('dw 
4T --OD 

whilst with a little manipulation we find 

(2.10) 

(2.11) 

T1 denotes the first spectral moment of the pulse. We note that TI is of higher order in 
the SVEA than So. In analogy with equations (2.10) and (2.11) we define the moments 
of the atomic energy distribution 

(2.12) 

(2.13) 

According to equations (2.4) and (2.5) .To satisfies the following propagation 
equation: 

where 

AWo= W~(Z, a ) - W o ( ~ ,  -CO). 

The average wavevector can be defined as 

k a v  = k -(a4/az)aw 
where 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

3. Propagation laws 

In order to find the propagation equation for daV, or the first spectral moment 91, we first 
consider the following differential expression: 

(3.1) 
r = ~ ( 8 ' , $ ) + ~ ( 8 ' ~ & .  a 

r = 2 a 4 8 ( ~ )  - 2a8(au/at> - ca8'd. 

(au/at> = 4 < v >  - ((7 - S ) V )  -(U>/ Tz, 

Making use of equations (2.5) and (2.6) multiplied by 8 we can write 

(3 .2) 

From equation (2.2) we have 

(3.3) 
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and, from equation (2.4) 

h a  
2.9 at 

8 ( ( y - S ) v ) =  -- - ( ( y - S ) w ) .  

Finally equations (3.1-4) lead to 

a a 2 8  'D4 
at at 7-2 

~ ( 8 ' 4 )  + - - ( s ~ D ~ )  = - 2T~hw0- ( (y  - S ) W ) - - ~ ~ ~ ~ $  --. 

(3.4) 

(3.5) 

The above formula relates the variation of phase to the variation of 8 and w which 
determine the amount of energy in the system. In the absence of losses and relaxations 
equation (3.5) takes the form of a conservation law 

This equation is independent of the energy conservation law (compare equation (3.10) 
below). It is trivially satisfied in the absence of chirping when 4 = constant (Michalska- 
Trautman 1975). 

Integrating equation (3.5) over time we get, for a single pulse, 

where 
A Wi = W ~ ( Z ,  00)- W ~ ( Z ,  -00). 

In the absence of losses and relaxation equation (3.7) expresses the conservation ofthe 
first moment of the total energy distribution in the system calculated with respect to the 
carrier frequency wo of the pulse. 

Making use of equations (2.8), (2.9) and (2.12) we derive from equation (3.7) the 
propagation law for the average carrier frequency: 

or, more explicitly 

A similar equation, with the last term missing, was found by Diels and Hahn (1973). 
The energy of the pulse does not depend on its phase in the lowest order of the 

slowly varying envelope approximation. This is seen from equation (2.14). However, 
when one takes into account corrections to the electromagnetic energy of higher order 
with respect to the expansion parameter  TWO)-^, where 7 is the duration of the pulse, 
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one finds the following energy conservation law: 

(3.10) 

where Cl= oo + y - S .  in this equation 8' contains higher-order corrections to the 
envelope. The derivation of equation (3.10) and a detailed discussion of the orders of 
magnitude in the SVEA can be found in a forthcoming paper (Michalska-Trautman 
1976). We denote by Y(z) the integral over time of 8'. The propagation law for the 
pulse energy can, therefore, be written in the form 

where 

T ( z )  = Y(z)[ 1 ----(-) A" 1 a4 1. 
00 k av 

(3.12) 

In this approximation the energy of the pulse depends on phase variation. 

average wavevector : 
Equation (3.11) combined with equation (3.7) leads to the propagation law for the 

The pulse energy T may also be written in the form 

T(z)=Y(z)[ l + * ( t - l ) ] ,  0 0  

(3.13) 

(3.14) 

where 

v p h  = wav/kav  

is the average 'phase velocity' of the pulse. 
While this paper was being refereed, a paper by Deck and Lamb (1975) appeared, 

where a hierarchy of conservation laws for phase-dependent Maxwell-Bloch equations 
is derived. Our conservation law (3.6) corresponds to the second law of this hierarchy. 
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